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Effect of three-body interactions on the vapor-liquid phase equilibria
of binary fluid mixtures
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Gibbs-Duhem Monte Carlo simulations are reported for the vapor-liquid phase coexistence of binary
argon+krypton mixtures at different temperatures. The calculations employ accurate two-body
potentials in addition to contributions from three-body dispersion interactions resulting from
third-order triple-dipole interactions. A comparison is made with experiment that illustrates the role
of three-body interactions on the phase envelope. In all cases the simulations represent genuine
predictions with input parameters obtained independently from sources other than phase equilibria
data. Two-body interactions alone are insufficient to adequately describe vapor-liquid coexistence.
In contrast, the addition of three-body interactions results in very good agreement with experiment.
In addition to the exact calculation of three-body interactions, calculations are reported with an
approximate formula for three-body interactions, which also yields good results. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2275309�
I. INTRODUCTION

The physical properties of fluids are governed
overwhelmingly1 by interactions involving pairs of mol-
ecules. However, it has also been documented2–4 that three-
body interactions can make a small but significant contribu-
tion to the energy of liquids. The vapor-liquid phase
transition represents an important property, which is sensitive
to intermolecular interactions. Typically, the vapor-liquid
equilibria of both pure substances and mixtures have been
modeled5 using effective intermolecular potentials, which do
not distinguish between the different many-body contribu-
tions to interactions between molecules. Molecular
simulation6 is an ideal tool to investigate the role of intermo-
lecular interactions because, unlike conventional theoretical
methods, the contributions from intermolecular potentials
can be evaluated rigorously. Historically, molecular
simulation6 studies have also been confined largely to the
evaluation of pairwise interactions using effective inter-
molecular potentials such as the Lennard-Jones potential.
However, recent work7–12 has been reported using either an
accurate two-body+three-body potential7,8 or ab initio inter-
molecular potentials.9–12

Molecular simulation of the phase behavior of pure
fluids7–9 has consistently shown that three-body interactions
have a significant influence on vapor-liquid coexistence. For
example, studies7,8 using either the two-body Aziz-Slaman13

�AS� or Barker-Fisher-Watts14 �BFW� potentials with the
three-body Axilrod-Teller15 �AT� term indicate that three-
body interactions are required to accurately determine the
coexistence densities of the liquid phase. In contrast, the role
of three-body interactions on the phase behavior of binary
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mixtures is less well documented. Marcelli and Sadus16 re-
ported preliminary results, which indicated that the main in-
fluence of three-body interactions in binary mixtures was to
slightly alter the coexistence densities whereas the pressure-
composition behavior was not significantly affected. In con-
trast, more recent work14 using an ab initio potential has
indicated that three-body interactions affect the pressure-
composition behavior of binary mixtures. Unlike pure com-
ponent systems, binary mixtures introduce the complication
of accounting for interactions between dissimilar molecules
which can potentially generate a diverse range of phase
behavior.5 This diversity of behavior has practical implica-
tions for processes such as the storage and transportation of
fluids, the design of plant and equipment, and scientific in-
vestigations of the properties of mixtures. The aim of this
work is to determine the influence of three-body interactions
on the vapor-liquid equilibria of binary mixtures

II. THEORY

A. Intermolecular potentials

Details of the intermolecular potentials have been dis-
cussed elsewhere8 and therefore only a brief outline is given
here. The two-body interactions of argon are well repre-
sented by the BFW potential14 which is a linear combination
of the Barker-Pompe17 �uBP� and Bobetic-Barker18 �uBB�
potentials,

u2�r� = 0.75uBB�r� + 0.25uBP�r� , �1�

where the potentials of Barker-Pompe and Bobetic-Barker

have the following form:
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u2�r� = ���
i=0

5

Ai�z − 1�i exp���1 − z�� − �
j=0

2
C2j+6

� + z2j+6� .

�2�

In Eq. �2�, z=r /rm, where rm is the intermolecular separation
at which the potential has a minimum value, and the other
parameters are obtained by fitting the potential to experimen-
tal data for molecular beam scattering, second virial coeffi-
cients, and long-range interaction coefficients. The contribu-
tion from repulsion has an exponential dependence on
intermolecular separation and the contributions to dispersion
of the C6, C8, and C10 coefficients are included. The only
difference between the Barker-Pompe and Bobetic-Barker
potentials is that a different set of parameters is used in each
case. These parameters14 are summarized in Table I.

Modifications2 to Eq. �2� are required to obtain an opti-
mal representation for other noble gases. For krypton, Barker
et al.2 determined a potential of the form

u2�r� = u0�r� + u1�r� , �3�

where u0�r� is identical to Eq. �2� and u1�r� is given by

u1�r� = ��P�z − 1�4 + Q�z − 1�5�exp����1 − z�� , z � 1

0, z � 1,
	

�4�

and ��, P, and Q are additional parameters obtained by fit-
ting data for differential scattering cross sections. In this
work we have used Eq. �3� to predict the properties of kryp-
ton with the parameters2 summarized in Table I. In the par-

TABLE I. Summary of the intermolecular potential parameters used in this
work.

Argona Kryptonb

�DDD �a.u.�c 518.3 1572
� /k �K� 142.095 201.9
� �Å� 3.3605 3.573
rm �Å� 3.7612 4.006 7

Barker-Pompe Bobetic-Barker

� 12.5 12.5 12.5
�� 12.5
� 0.01 0.01 0.01
A0 0.2349 0.292 14 0.235 26
A1 −4.7735 −4.414 58 −4.786 86
A2 −10.2194 −7.701 82 −9.2
A3 −5.2905 −31.929 3 −8.0
A4 0.0 −136.026 −30.0
A5 0.0 −151.0 −205.8
P −9.0
Q 68.67
C6 1.0698 1.119 76 1.063 2
C8 0.1642 0.171 551 0.170 1
C10 0.0132 0.013 748 0.014 3

aTwo-body parameters from Ref. 14.
bTwo-body parameters from Ref. 2.
cFrom Ref. 22.
ticular case when ��=�, Eq. �3� becomes
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u2�r� = ���
i=0

5

Ai��z − 1�i exp���1 − z�� − �
j=0

2
C2j+6

� + z2j+6� ,

A1� = A1, A2� = A2, A3� = A3,

�5�
A4� = A4 + P for z � 1 and A4� = A4 for z � 1,

A5� = A5 + Q for z � 1 and A5� = A5 for z � 1.

Different types of interaction are possible depending on
the distribution of multipole moments between the
atoms.19–21 Marcelli and Sadus8 evaluated the contributions
from third-order interactions involving dipoles and quadru-
poles in addition to the fourth-order triple-dipole contribu-
tion. There is a high degree of cancellation of the multipole
terms, which means that the third-order triple-dipole term
alone is a good representation of three-body dispersion inter-
actions. In view of this, we have only considered contribu-
tions from third-order triple-dipole interactions in this work.

The triple-dipole potential can be evaluated from the for-
mula proposed by Axilrod and Teller,15

uDDD�ijk� =
�DDD�ijk��1 + 3 cos �i cos � j cos �k�

�rijrikrjk�3 , �6�

where �DDD�ijk� is the nonadditive coefficient, and the
angles and intermolecular separations refer to a triangular
configuration of atoms. The nonadditive coefficients22,23 for
argon and krypton are summarized in Table I.

B. Combining rules

The above intermolecular potentials can be applied di-
rectly to binary mixtures by assuming suitable combining
rules for the intermolecular parameters. In general if we de-
note an energylike parameter such as � or � of an atom of
identity i by the symbol Wiii, the contribution of interacting
pairs and triplets of atoms can be calculated from

Wijk = �WiiiWjjjWkkk�1/3,

�7�
Wij = �WiiWjj�1/2.

In general if we denote distance-related parameters such as
�, A, C6, etc., by the symbol Y, the contribution of interact-
ing pairs of atoms can be calculated from

Yij =
Yii + Y jj

2
. �8�

C. Simulation details

The vapor-liquid properties of mixtures of argon and
krypton at different temperatures were obtained using the
Gibbs-Duhem algorithm.24 The Gibbs-Duhem algorithm is
not self-starting: it requires a priori knowledge of a coexist-
ence point. In this work, a convenient choice for the initial
starting point was the vapor-liquid equilibrium point of pure
krypton. For each temperature, we first evaluated the vapor-
liquid coexistence of krypton using the Gibbs ensemble25 for

500 atoms. Typically 1500 cycles are used for equilibration
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and a further 1500 cycles are used to calculate ensemble av-
erages. Each cycle consisted of 500 attempted displacements,
an attempted volume change, and 500 atom exchange at-
tempts.

The semigrand ensemble version24 of the Gibbs-Duhem
algorithm was used for the simulation of the argon
+krypton binary mixtures because of the similarity of the
two components. The system size was 512 atoms in each
phase. Before commencing the Gibbs-Duhem algorithm, the
initial ratios of fugacity and Henry’s constant for the starting
coexistence point were obtained by performing NPT Monte
Carlo simulations for 10 000 preequilibration and 10 000
postequilibration cycles. Each cycle typically involved 512
attempted displacements, an attempted volume change, and
512 “fake” identity exchange attempts.

The Gibbs-Duhem Monte Carlo simulations were as fol-
lows. Starting from the initial point, 20 simulations were
performed according to Clapeyron equations at different
fugacity fractions. The reduced step size for the fugacity
fractions was 	
=0.05. Each step involved 10 000 cycles:
8000 cycles for equilibration and further 2000 cycles to ac-
cumulate ensemble averages. Each cycle involved 512 at-
tempted displacements, an attempted volume change, or 512
attempted identity exchanges. The phase and the type of
move were chosen at random. Periodic boundary conditions
were applied. The two-body potentials were truncated at half
the box length and appropriate long-range correction terms
were evaluated to recover the contribution to pressure of the
full intermolecular potential. The three-body simulations
were truncated at a quarter of the box length as described
previously.8

III. RESULTS AND DISCUSSION

Two-body interactions are undoubtedly the dominant in-
fluence on the properties of fluids. Therefore, an accurate
description of two-body interactions is required before any
conclusions concerning the influence of three-body interac-
tions can be made reliably. This important precondition se-
verely limits the scope of mixtures that can be investigated.
In practice, it means that we are limited to mixtures of noble
gases for which accurate two-body potentials are available.
As simple atoms, the noble gases are also free of additional
complexity of shape, bonding, etc., that occur in molecules.
However, the vapor-liquid equilibria of noble gases such as
helium and neon introduce the additional uncertainty of
quantum corrections. This leaves argon, krypton, and xenon
as candidates for the formation of binary mixtures. Experi-
mental data for the vapor-liquid equilibria of mixtures in-
volving xenon and either argon or krypton are either scarce
or nonexistent which further limits the comparison to the
argon+krypton binary mixture. We used the BFW potential
�described above� because previous experience8 had demon-
strated that it was an accurate representation of two-body
interactions and it could be applied to both argon and
krypton.

We performed simulations at temperatures of 143.15,
148.15, 153.15, 158.15, 163.15, and 177.38 K. These tem-

peratures were chosen to enable a direct comparison with
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experimental data26 and to examine three-body influences
over a reasonable range of temperatures. In all cases, two
distinct simulations were performed. The phase envelope
was determined using only two-body interactions and two
-body+three-body interactions. The comparison of simula-
tion with experiment �Figs. 1–3� indicates that two-body in-
teractions alone fail to adequately describe the pressure-
composition behavior of the argon+krypton binary mixtures.
In particular, at low temperatures �Fig. 1� there is hardly any
overlap between the experimental and simulation data. In
contrast, the simulations, which include three-body interac-
tions, yield very good agreement with the experimental data
in all cases. The agreement with experiment is particularly
noteworthy along the vapor branch.

These good results were achieved by using simple com-
bining rules �Eqs. �7� and �8�� for all the contributions to the
intermolecular potential parameters from interactions be-
tween dissimilar atoms. The simulations represent genuine
predictions, which do not use any arbitrarily fitted combining
rule parameters. However, the use of alternative combining
rules could possibly further improve the agreement between
theory and experiment. Delhommelle and Millié27 have con-

FIG. 1. Vapor-liquid equilibria of argon+krypton binary mixtures at tem-
peratures of 143.15 and 148.15 K. Experimental data �Ref. 26� �-�-� are
compared with two-body ��� and two-body+three-body simulations ���
reported in this work.
cluded that the Lorentz-Berthelot combining rules overesti-
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mate the properties of the noble gases. Improved agreement
for the phase equilibria of binary molecular systems has also
been reported28 using alternative combining rules. However,
these investigations involved either the Lennard-Jones poten-
tial or the exponential-six potential rather than the genuine
two- and three-body potentials used in this work. Conclu-
sions reached regarding the appropriateness of combining
rules are almost invariably affected by the choice of intermo-
lecular potential. An analogous situation arises in the con-
ventional calculation5,29 of phase equilibria for which the
choice of equation of state directly affects the magnitude of
combining rule parameters. This means that there is no a
priori prescription for the choice of combining rules that is
likely to be equally valid for all intermolecular potentials. It
should be noted that the main aim of this work was to ex-
amine the role of three-body interactions on vapor-liquid
equilibria in binary mixtures. Although it is likely that the
use of superior combining rules would improve quality of
agreement between theory and experiment, this would not
significantly affect the conclusions reached regarding the
relative contribution of two- and three-body interactions.

FIG. 2. Vapor-liquid equilibria of argon+krypton binary mixtures at tem-
peratures of 153.15 and 158.15 K. Experimental data �Ref. 26� �-�-� are
compared with two-body ��� and two-body+three-body ��� simulations
reported in this work. For mixtures at 158.15 K, a comparison is also made
with simulation data reported previously �Ref. 12� using two-body ab initio
��� and two-body ab initio � AT ��� potentials.
It is reasonable to infer from these comparisons that
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three-body interactions can be used to significantly improve
the prediction of vapor-liquid equilibria of binary mixtures.
In contrast, Marcelli and Sadus16 previously used the Gibbs
ensemble to investigate the vapor-liquid equilibria of argon
+krypton at 163.15 K without observing any significant
influence of three-body interactions on the pressure-
composition behavior. We attribute this to the relatively short
simulation length and the small system size: only
3000 cycles were used and, on average, each phase con-
tained less than 250 atoms.

Recently, Nasrabad et al.12 reported calculations for the
argon+krypton mixture using an ab initio two-body potential
with the AT term. Their calculations are compared with our
results in Figs. 2 and 3. At 158.15 K �Fig. 2�, the ab initio
two-body potential provides a better coverage of the phase
envelope than the BFW potential. The addition of the AT
term improves the agreement of theory with experiment for
the vapor branch, which is consistent with our results. How-
ever, the pressure of the liquid branch is overpredicted
whereas our results are in good agreement with experiment.
At 163.15 K �Fig. 3�, the BFW and ab initio potentials yield

FIG. 3. Vapor-liquid equilibria of argon+krypton binary mixtures at tem-
peratures of 163.15 and 177.35 K. Experimental data �Ref. 26� �-�-� are
compared with two-body ��� and two-body+three-body ��� simulations
reported in this work. Comparison is also made with simulation data re-
ported previously �Ref. 12� using two-body ab initio ��� and two-body
ab initio � AT ��� potentials.
similar behavior. Once again, the addition of the AT term

AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



074503-5 Three-body interactions in mixtures J. Chem. Phys. 125, 074503 �2006�
improves the agreement with experiment for the vapor
branch in both cases but the ab initio�AT combination over-
predicts the pressure of the liquid branch. At 177.38 K
�Fig. 3�, our two-body+three-body calculations coincide rea-
sonably close to the experimental data for both the vapor and
liquid branches. Compared to the calculations at lower tem-
peratures, agreement obtained for the liquid phase for the
ab initio�AT calculations is somewhat better at this tem-
perature. However, the improvement in accuracy appears to
be at the expense of reduced accuracy for the vapor branch,
which is now slightly underpredicted at most compositions.
We note that the accuracy of the ab initio potential depends
crucially on the quality of the fit of simulation data to an
analytical expression. Therefore, future improvements in
the accuracy of the data have the potential to improve the
ab initio�AT results.

The calculation of three-body interactions is computa-
tionally prohibitive for routine application. In the worse case,
the evaluation of three-body interactions for N atoms in-
volves N3 calculations compared with N2 calculations for
two-body interactions. However, it is apparent that two-body
intermolecular potentials alone are not reliable for the accu-
rate prediction of the properties of real fluids. This means
that the simulation of real fluids must rely on the use of
effective potentials such as the Lennard-Jones potential,
which only involve pairwise interactions. To use genuinely
two-body potentials, Marcelli and Sadus30 proposed a simple
formula to obtain the three-body contribution to energy �E3�
from the two-body energy �E2�:

E3 = −
2��E2

3��6 , �9�

where � is the number density, � is the depth of the two-body
intermolecular potential, � is the two-body collision diam-
eter, and � is the three-body nonadditive coefficient. Equa-
tion �9� can be directly incorporated into a two-body simu-
lation. The main modification is that the calculation of
pressure �p� must account for the density dependence of the
intermolecular potential:31

p = −
 �
i
j=1

N
1

3V

du2�rij�
drij

rij�
+
 �

i
j=1

N
2��

9V��6

du2�rij�
drij

rij� − 
 2��2

3��6E2� . �10�

Equation �9� works well for pure systems30 but it has not
been tested for mixtures.

To apply Eq. �9� to the mixtures, we propose a simple
one-fluid approximation:5

E3 = −
2�E2

3�11�11
6 �x1

2�111 + x1x2�112 + x1x2�221 + x2
2�222� ,

�11�

where xi is the molar fraction of component i and �ijk is the
three-body potential coefficient for the three different com-
ponents i, j, and k. The above equation is based on the im-

plicit assumption that the radial distribution functions of the
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component molecules are identical, and they both explicitly
contain a contribution from interactions between dissimilar
molecules.

To test the accuracy of this relationship, we performed
Gibbs-Duhem simulations for argon+krypton mixtures at
temperatures of 148.15 and 163.15 K. In these simulations,
the contribution of three-body interactions was determined
by Eq. �11�. All other simulation details were identical to the
full two-body+three-body calculations. Comparisons of ex-
periment with simulation results using the two-body poten-
tial plus either the AT term or Eq. �11� are illustrated in Fig.
4. It is apparent from these comparisons that the calculations
using Eq. �11� are almost the same as the results obtained
from the full two-body and three-body calculations. This
means that Eq. �11� provides a sufficiently accurate estimate
of the contribution of three-body interactions to the energy of
the binary mixture. The use of Eq. �11� reduces the overall
computation time to that of a conventional two-body simu-
lation.

IV. CONCLUSIONS

Molecular simulations using accurate two-body and

FIG. 4. Vapor-liquid equilibria of argon+krypton binary mixtures at tem-
peratures of 148.15 and 163.15 K. Experimental data �Ref. 26� �-�-� are
compared with simulations obtained using a full two-body+three-body ���
calculations and the approximate three-body formula �Eq. �11�� ���.
three-body intermolecular potentials result in very good
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overall agreement with experiment for the vapor-liquid equi-
libria of the argon+krypton binary mixture. Three-body in-
teractions have an important role in determining vapor-liquid
coexistence in binary mixtures. In the absence of three-body
interactions, the pressure-composition behavior of binary
mixtures is poorly predicted. The addition of three-body in-
teractions provides near perfect agreement with experiment
for the vapor branch of the coexistence curve while simulta-
neously improving the agreement with experiment on the
liquid branch. A simple relationship between two- and three-
body interactions can be used to incorporate the effect of
three-body interactions without significant additional compu-
tational cost.
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